Stability of solutions of weakly nonlinear functional differential equations
نویسندگان
چکیده
منابع مشابه
Topological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملAsymptotic Behavior of Solutions of Nonlinear Functional Differential Equations
Using the properties of almost nonexpansive curves introduced by B. Djafari Rouhani, we study the asymptotic behavior of solutions of nonlinear functional differential equation du(t)/dt + Au(t)+ G(u)(t) f(t), where A is a maximal monotone operator in a nilbert space H,f E LI(0,:H) and G:C([O,c):D(A))LI(O,c:H)is a given mapping.
متن کاملStability of Nonlinear Neutral Stochastic Functional Differential Equations
Neutral stochastic functional differential equations NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper i...
متن کاملtopological soliton solutions of the some nonlinear partial differential equations
in this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (srlw) equation and the (3+1)-dimensional shallow water wave equations. solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions the physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. note t...
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1970
ISSN: 0022-247X
DOI: 10.1016/0022-247x(70)90291-x